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Macroscopic polarization, orbital magnetization, and related quantities have
a trivial expression for a molecule or for a finite crystallite, where the wave-
function is square-integrable: so-called “open” boundary conditions (OBCs).
In condensed matter physics it is instead necessary to adopt periodic bound-
ary conditions (PBCs): what makes life difficult is the unbounded position
operator r, which is not a legitimate operator within PBCs.

Solutions to this problem are known since the early 1960s, when the first
expressions for computing the dielectric polarizability of a solid where pro-
posed. Other solutions, to be applied to different problems, appeared over
the years. Invariably, bulk properties of a crystalline system are cast as Bril-
louin zone (BZ) integrals, where the integrand is expressed in terms of Bloch
orbitals. We have therefore two expressions—one a k-space integral within
PBCs, the other an r-space integral within OBCs—for the same physical
property. What is disturbing is that the two expressions do not bear any
apparent relationship.

Here I am going to show that the OBCs and PBCs expressions for a given
property are essentially the same when expressed in terms of the projected po-
sition operator r̃, defined below. While some of the results presented here are
known, some are not: in particular, the expression for orbital magnetization
given below is new.

For noninteracting electrons (either Hartree-Fock or Kohn-Sham) the
ground state is uniquely determined by the projector P over the occupied
electronic states; in the large system limit, P is the same within either OBCs
or PBCs. We define as Q the complementary projector over the unoccu-
pied states, and we define the Hermitian operator r̃ = P rQ + QrP , i.e. r
minus its occupied-occupied and unoccupied-unoccupied components. In a
crystalline system r̃ is a lattice-periodical operator, and is expressed as a
BZ integral. The physical properties of interest will be expressed as traces
per unit volume involving r̃. The novel compact formulation applies to both
OBCs and PBCs; it even applies to noncrystalline systems, where r̃ is no
longer lattice-periodical, but is nonetheless a regular operator.



In the following the symbol “Tr” means trace per unit volume; it be-
comes the trace per cell in the crystalline case. The expressions are given for
“spinless electrons”; trivial factors of 2 are not included.

Polarization. When an insulating system is adiabatically transformed be-
tween an initial and a final state the (electronic) polarization difference is
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Quadratic spread. The gauge-invariant quadratic spread, as it enters the
Marzari-Vanderbilt theory of maximally localised Wannier functions, is

ΩI = VcellTr {P r̃ · r̃},

where Vcell is the cell volume. When used for a molecule within OBCs, the
analogous formula yields the gauge-invariant spread of Boys’ orbitals.

Orbital magnetization. The new formula for insulating materials is

Mγ = −
ie
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ǫγαβTr {|H − µ| r̃αr̃β},

where µ is the Fermi level. We stress that this applies to both a finite
crystallite within OBCs, and to a crystalline system within PBCs. When
the operator r̃ is expressed as a BZ integral, we recover the known k-space
formula of the modern theory of magnetization. The present formula, as
given, holds for Chern insulators as well.

Chern number. We switch here to a two-dimensional system, and we
redefine “Tr” as the trace per unit area. The Chern number is

C = −2πiTr {P [x̃, ỹ]}.

If the formula is adopted for a finite flake within OBCs the total trace van-
ishes; nonetheless the trace per unit area evaluated in an inner region of the
flake provides the Chern number.

Acknowledgments
Work supported by the ONR Grant No. N00014-11-1-0145.


